
International Journal of Scientific & Engineering Research, Volume 2, Issue 12, December-2011 1

ISSN 2229-5518

IJSER © 2011

http://www.ijser.org

OSD: A Source Level Bug Localization Technique
Incorporating Control Flow and State Information

in Object Oriented Program
Partha Pratim Ray

Abstract— Bug localization in object oriented program has always been an important issue in softeware engineering. In this paper, I

propose a source level bug localization technique for object oriented embedded programs. My proposed technique, presents the idea of

debugging an object oriented program in class level, incorporating the object state information into the Class Dependence Graph (ClDG).

Given a program (having buggy statement) and an input that fails and others pass, my approach uses concrete as well as symbolic

execution to synthesize the passing inputs that marginally from the failing input in their control flow behavior. A comparison of the

execution traces of the failing input and the passing input provides necessary clues to the root-cause of the failure. A state trace difference,

regarding the respective nodes of the ClDG is obtained, which leads to detect the bug in the program.

Index Terms— Bug, ClDG, Embedded software, Object oriented program, Object state, UML.

—————————— ——————————

1 INTRODUCTION

ROM the last few years embedded systems have estab-
lished itself as unavoidable criteria in human society. Due
to its low code size and less complexity embedded systems

are being implemented in the most sophisticated and critical
applications. With this advent of havoc implication of em
bedded systems, the whole science community is now moving
towards object oriented methods to fulfill the excessive need
of these systems. The power of handling complexity is the
added advantage to the object oriented technologies that ena-
ble them to compete other traditional techniques like as pro-
cedural approach.

Debugging denotes the process of detecting root causes of

unexpected observable behavior in programs (such as a pro-
gram crash, an unexpected output value being produced or an
assertion violation). Debugging program errors is a difficult
process, and often takes a significant fraction of the time in the
program development stage. Even today, debugging remains
much of a manual activity, with the actual debugging time de-
pendent on the size and complexity of the program being de-
bugged, the nature of manifestation of the bug and the level of
familiarity and expertise of the programmer. The standard prac-
tice of debugging till date in the software community is to ma-
nually inspect the execution trace exhibiting the bug inside a
debugger and try and locate the error cause(s) from an observed
error.

In the past decade, there have been several attempts to au-

tomate the debugging activity by fully automated or semi
automated formal analysis of the program and/or the failed
execution trace for software programs. These methods, in spite
of rich theoretical foundations and promising automated bug
finding capabilities, have found a low degree of acceptance and

penetration in the research and industrial community till date.
The main challenge is to develop a scalable solution that can
handle softwares of sizeable complexity and pin-point the
root cause(s) of an observed error with a high level of accu-
racy.

The software needs to undergo a very crucial stage of its
life cycle; debugging process. Whenever a program behaves
un-expectedly thus producing wrong output is liable to be
called a buggy program. In effect to remove the bug from the
program the debugging methodology should be very stable
one. Though different techniques are already available to de-
bug an object oriented program, they all are not very suitable
for the targeted problem, such as having a prominent state
chart in form of UML. In this type of cases I need to imply a
new technique that adds object state information of the class
being executed, into the ClDG. This helps in knowing the root
cause of the bug, introduced in the program under execution.

The Class Dependence Graph (ClDG) represents the control

and data dependencies within a class [1]. For a given class, the
ClDG consists of a set of program dependence graphs (PDGs)
[2] with additional edges to represent inter-procedural control
and data dependences. A statement in a procedure is
represented by a statement vertex. Control and data depen-
dences between program statements are represented by con-
trol dependence and data dependence edges, respectively. In
this paper I first take a buggy object oriented program and
generate a state chart UML diagram and ClDG. After the
models are generated I input some test cases into the buggy
program, that results a fail and pass traces. Then one of the
pass case is selected the match class dependence flow to the
failed one. This result in object state comparison between the
pair of pass and fail cases, producing the bug report telling the
position of bug inside the buggy program.

This paper is organized as follows: Section 2 presents re-

lated work. Section 3 presents an overview of my approach.
Section 4 presents detailed methodology, while Section 5 ends

F

————————————————

 Partha Pratim Ray is an Assistant Professor in the Department of Compu-
terScience and Engineering in Surendra Institute of Engineering and
Management, Dhukuria, P.O. New Chamta, P.S. Matigara, Siliguri, Dar-
jeeling - 734009, West Bengal, India.
E-mail: parthapratimray @hotmail.com

International Journal of Scientific & Engineering Research, Volume 2, Issue 12, December-2011 2

ISSN 2229-5518

IJSER © 2011

http://www.ijser.org

with conclusion.

2 RELATED WORK

Many testing technique has been already proposed in litera-
ture for testing in traditional programs [4]. Literature [7] tells
about the selection of regression tests in object oriented pro-
grams. [8] identifies the test coverage requirements for mod-
ified softwares. In [3], a model based regression test selection
methodology has been presented. Existing model-based ap-
proaches for traditional programs [9] construct graphical
models based solely on source code analysis of the programs.
[12] proposes real time software debugging technique. [13]
tells about exception handling in respect to testing of software.
[14] also tells some improvement on exception handling in
testing area. [16]describes about the state chart based object
oriented integrated testing. In [17] different aspects of testing
and debugging have been presented well. Different search
algorithms for regression test cases have been proposed in
[18].

3 OVERVIEW OF OSD APPROACH

I have named my technique Object State-based Debugging for
object oriented program (OSD). My technique is essentially
based on first constructing models for buggy program that is
state chart and ClDG. Then state transition table is created
according to the state chart. Here one thing is to be noted that
ClDG is incorporated with the state chart. That means each
node of ClDG is accompanied with a state (state of object of
same class). Then a test suite t1,...,ti,...tj,...tk, is applied as input
into the buggy program. This results in some pass and some
fail cases. Suppose the set of pass cases is t1,...,tj-1,tj+1,...,tk and
the fail set is tj (single element). Now at this point OSD, control
dependence flow comparison is made between fail set-tj and
all of pass set-t1,...,tj-1,tj+1,...,tk. After the comparison, ti is the
sole test input that matches the most to tj (in respect to control
dependence flow). At this stage of OSD State comparison oc-
curs between ti and tj, resulting bug report that points out the
bug in source code level.

The important steps of my approach have been shown

in figure 1; the rounded corner blocks represent initial input
test suite, control dependence flow comparison, state compari-
son, bug report etc. The rectangular blocks represent buggy
object oriented program, ClDG, state chart UML, state transi-
tion table and other output test case and sets etc. I now briefly
discuss the different steps involved in my approach.

1. The Buggy object oriented program is the source code
written in C++ language. It is basically a buggy code
where the logic of an elevator controller (embedded
system) is illustrated. My target is to debug this code.

2. The State chart UML is the finite state machine model
corresponding to the buggy program.

3. The State transition table is generated from state chart
UML model. It contains various initial and final states
with their condition and operation embedded.

4. The ClDG model represents the class dependence
graph of the buggy program itself.

5. The Control dependence flow comparison block com-
pares the control dependence flow between the failed
and all other passed input.

6. The State comparison block compares the states of ti
 and tj, between the nodes of ClDG.
7. The Bug report is the final report regarding bug

present inside the buggy program, which can point out
the location of bug in source code level.

8. The t1,...,ti,...,tj,...,tk is the input test suite.
9. The t1,..,ti,...tj-1,tj+1,...,tk is the pass input of the previous

told suite.
10. The tj is the failed input from the input suite.
11. The ti is the best chosen input from the set of pass in-

puts belonging to initial test suite.

4 DETAILED APPROACH

In this section I will describe the detailed methodology of Ob-
ject State based Debugging (OSD). First thing that I will
present in this portion is the buggy program.
4.1 Buggy Object Oriented Program

The figure 2 is the code snippet of an elevator controller writ-
ten in C++. The controller has two main parts.
 Request Resolver – resolves various floor requests into sin-
gle requested floor.

Control – moves elevator to its requested floor.

Fig. 1. Overview approach to OSD.

International Journal of Scientific & Engineering Research, Volume 2, Issue 12, December-2011 3

ISSN 2229-5518

IJSER © 2011

http://www.ijser.org

1. Description: Elevator [11] moves either up or down to
reach the requested floor. Once at the requested floor,
open the door for at least 10 seconds, and keep it open
until the requested floor changes. It is ensured that the
door is never open while moving. Elevator does not
change directions unless there are no higher requests
when moving up or no lower requests when moving
down. In this paper, I have taken the building to be
three storied (having number of floors equal to three
that is - ground -0, first-1, second-2) for simplicity.

2. Prefixes introduced in program: The numbers have
been assigned sequentially to each statement in the or-
der they appear in the source code for identifying them
in the ClDG. The prefixes S, E, CE and C denote state-
ments, method entry, class entry and call nodes respec-
tively.

3. Bug intoduced: In respect to my investigation, I
have introduced a bug inside the code. Line number 13
and 14 in unitControl() method of Control class. This
results in door open when any one, requests a floor
(which is 1 in this case) from a lower floor (say floor
number 0). This repels the door to be open for 10000
milliseconds, thus not invoking the expected task
(movement). This restricts the person (standing at
ground floor) to go first floor. This code works well
otherwise.

4. Concurrency error ignorance: This code snippet is
purely an example of concurrency. Hence the hazards
regarding concurrency such as deadlock, synchroniza-
tion have been ignored at time.

4.2 State Chart

I have obtained a state chart UML diagram from figure 2. The
diagram is shown in the figure 3. The state chart shows four
different states – Idle, Going Up, Going Down, and Door Open
as the probable states. Possible transitions from one state to
another is based on input (e.g., req > floor, req < floor etc.).
Actions are occurred in each state (E.g., the GoingUp state
u,d,o,t = 1,0,0,0 (up = 1, down, open, and timer start = 0).

4.3 State Transition Table

Table 1 refers to the state transition table generated from fig-
ure 3. The transition table contains initial state, condition, op-
eration or action, final state. There is another state Not De-
fined– ND, that can play an important role in providing object
state information to those states which can always not satisfy
the given state chart criteria. Going up = u, Going Down = d,
Door open = o, timer start = t are different notions of actions,
that frequently occur in each state of the class (object state in-
formation) under execution.

4.4 ClDG representation of the buggy program

In this section, I will generate the ClDG corresponding to the
buggy object oriented program (figure 2). Along with this re-
presentation, I demonstrate another ClDG incorporated with
state information of class Control, from the program. I choose
this class regardless of other two modules of program (e.g.,
class RequestResolver and void main).

1. State information incorporation to ClDG: From the
program shown in figure 2, it can easily be said that the
class Control is the main module that controls over the
elevator movement. Hence, for simplicity I am interest-
ed only to this module of the program. Here I have in-
troduced a critical metric – object state information, in-
to the various nodes of the ClDG of the class Control.
The similar is shown in the figure 5. Where each rec-
tangular box is associated with the state information to
the corresponding nodes of the ClDG.

Fig. 2. Buggy Object Oriented Program snippet.

Fig. 3. State chart generated from figure 2.

International Journal of Scientific & Engineering Research, Volume 2, Issue 12, December-2011 4

ISSN 2229-5518

IJSER © 2011

http://www.ijser.org

4.5 Test suite deployment

In this portion, I will feed the buggy program with input test
suite. This results in a test suite decision table. This table
shows all the combination that can form from a three storied
building architecture, capturing its three floors and the cor-
responding requests. This table shows all the nodes belong to
class Control. The ‘+’ sign represents the full execution of the
respective nodes, while ‘-’ sign tells about the bypassing
nodes. Finally the combinations of inputs result in the fail or
pass mark, shown in figure 6.

 All test cases involving <floor, req> are shown in the fig-
ure 6. From this, I got the clear view of control dependence
flow in respect to the nodes of ClDG. The <0, 1> input, results
in failure, where as others pass. Analyzing the whole test suit
decision table, it can promptly be said that input <0, 1> and
<1, 2> are closely matched to each other (in respect of control
dependence flow).

TABLE 1
STATE TRANSITION TABLE GENERATED FROM FIGURE 3

Initial State Condition Operation (Action) Final State

Idle req == floor u,d,o,t =0,0,1,0 Idle

Idle req > floor u,d,o,t =1,0,0,0 Going Up

Idle req < floor u,d,o,t =0,1,0,0 Going
Down

Going Up req > floor u,d,o,t =1,0,0,0 Going Up

Going Up ! req > floor u,d,o,t =0,0,1,0 Door Open

Door Open timer < 10 u,d,o,t =0,0,1,1 Door Open

Door Open ! timer < 10 u,d,o,t =0,0,1,0 Idle

Going
Down

req < floor u,d,o,t =0,1,0,0 Going
Down

Going
Down

! req < floor u,d,o,t =0,0,1,0 Door Open

.

Fig. 4. ClDG of the whole program (Obtained from figure 2).

Fig. 5. State information incorporated to ClDG of the class Control.

Fig. 6. Test suite decision table for class Control.

International Journal of Scientific & Engineering Research, Volume 2, Issue 12, December-2011 5

ISSN 2229-5518

IJSER © 2011

http://www.ijser.org

4.6 State information comparison

Here I present the state information comparison between the
above pair of test inputs; the failed input <0, 1> and the pass-
ing input <1, 2>. The figure 7 illustrates the whole process.
Nd, Id, Do, Gu, Do represents Not defined, Idle, Door open,
Going up, Going down respectively. From the figure 7, it is
clear to understand that the two inputs <0, 1> and <1, 2> dif-
fers at node number S13 and S14, in respect of states (Gu at
S13 and Do at S14), shown in rounded form.

4.7 State comparison matrix

State comparison matrix is such a matrix that represents the
state alignment of failing input to the passing one. The figure
8 shows the state comparison between <0, 1> and <1, 2>. The
left most column presents the state information of passing in-
put (<0, 1>). Whereas, the upper most row presents the state
information of failing input (<1, 2>). The matrix basically
shows a straight line starting from upper left most corner to
the lower right most. The line represents the state alignment
between these two test inputs. There is a slope in the line, S13
and S14 numbered columns.

4.8 Source level bug detection

Now if, I take the information from the above paragraph and
search the reason of the misbehavior of the line in the matrix, I
can find that a couple of state changes occurred during the
execution of the code. While investigating this reason, I found
that line number 13 of the program involves if statement,
which when executes the bug is infiltrated inside the code
making it buggy. The if statement is true when it satisfies the
req==1 condition, resulting the control flow to jump at line
number 19. This keeps the door open, making the Door open
state true. Figure 9 shows the buggy segment inside the code.

5 CONCLUSION

In this paper I have proposed a new methodology for debug-
ging errors in the object oriented programs in source code lev-
el. I have given an OSD model as an implementation of object
state information into ClDG. I have proven the debugging
methodology, incorporating a previously known buggy pro-
gram into a debugged one. Currently I am busy with the im-
plementation of the proposed OSD model.

REFERENCES

[1] Gregg Rothermel and Mary Jean Harrold. Selecting re-
gression tests for object oriented software. In Proc. of the
Intl. Conf. on Software Maintenance - 1994, pages 14-25,
Victoria, BC, Canada, Sep 1994.

[2] Jeanne Ferrante, Karl J. Ottenstein, and Joe D. Warren.
The program dependence graph and its use in optimiza-
tion. ACM Transactions on Programming Languages and
Systems, 9(3):319-349, Jul 1987.

Fig. 7. State comparison between the failure and passing test cases.

Fig. 8. State comparison matrix.

Fig. 9. Bug localization in source code level.

International Journal of Scientific & Engineering Research, Volume 2, Issue 12, December-2011 6

ISSN 2229-5518

IJSER © 2011

http://www.ijser.org

[3] Swarnendu Biswas, Rajib Mall, Manoranjan Satpathy and
Srihari Sukumaran. A Model-Based Regression Test Selec-
tion Approach for Embedded Applications. SIGSOFT
Software Engineering Notes, July 2009.

[4] M. Allen and S. Horwitz. Slicing java programs that throw
and catch exceptions. In In PEPM 03: Proceedings of the
2003 ACM SIGPLAN workshop on Partial evaluation and
semantics-based program manipulation, pages 44-54,
2003.

[5] R. Gupta, M. Harrold, and M. Soa. Program slicing based
regression testing techniques. Journal of Software Testing,
Verication, and Reliability, 6(2):83-112, June 1996.

[6] M. Harrold, J. Jones, T. Li, D. Liang, A. Orso, M. Pennings,
S. Sinha, S. A. Spoon, and A. Gujarathi. Regression test se-
lection for java software. In Proceedings of the 16th
ACM SIGPLAN Conference on Object Oriented Pro-
gramming, Systems, Languages and Applications, pag-
es 312-326, January 2001.

[7] G. Rothermel and M. Harrold. Selecting regression tegra-
tion testing. In Proceedings of World Academy of Science,
Engineering and Technology, volume 16, November 2006.

[8] G. Rothermel and M. Harrold. Selecting tests and identify-
ing test coverage requirements for modied software. In
Proceedings of the ACM International Symposium on
Software Testing and Analysis, pages 169-184, August
1994.

[9] G. Rothermel and M. Harrold. A safe, efficient regression
test selection technique. ACM Transactions on Software
Engineering and Methodology, 6(2):173-210, April 1997.

[10] G. Rothermel, M. Harrold, and J. Dedhia. Regression test
selection for C++ software. Software Testing, Verification
and Reliability, 10:77-109, June 2000.

[11] Embedded Systems Design: A Unified Hard-
ware/Software Introduction, (c) 2000 Vahid/Givargis.

[12] J. Tsai, K. Fang, and Y. Bi. On real-time software testing
and debugging. In Proceedings of the Fourteenth Annual
International Computer Software and Applications Confe-
rence,, pages 512-518, 1990.

[13] S. Sinha and M. Harrold. Analysis of programs with ex-
ception-handling constructs. In In Proceedings of the In-
ternational Conference on Soft- ware Maintenance, pages
348-357, 1998.

[14] S. Jiang, S. Zhou, Y. Shi, and Y. Jiang. Improving the
preciseness of dependence analysis using exception In
Proceedings of the 15th International Conference on
Computing IEEE, pages 277-282, 2006.

[15] S. Sinha and M. Harrold. Analysis and testing of pro-
grams with exception-handling constructs. IEEE Transac-
tions on Software Engineering, 26(9):849-871, 2000.

[16] R. Zhao and L. Lin. An uml statechart diagram-based
mmpath generation approach for object-oriented integra-
tion testing. In Proceedings of World Academy of Science,
Engineering and Technology, volume 16, November 2006.

[17] R. Mall. Fundamentals of Software Engineering. Prentice
Hall of India, 2nd edition, 2008.

[18] Z.Li, M. Harman, and R. Hierons. Search algorithms for
regression test case prioritization. IEEE Transactions on
Software Engineering, pages 495-505, March 1996.

————————————————

 Partha Pratim Ray has completed masters degree program in electronics
and communication engineering in 2011 from the West Bengal University
of Technology, West Bengal, India. He received bachelor’s degree in com-
puter science and engineering in 2008 from the same University. He is an
IEEE member. Till date, he has published 5 research papers in various
journal and conference proceedings.

